Skip to content

probes

This module contains the Probe abstract base class and its subclasses, used for probing for the different KDIGO criteria.

AbsoluteCreatinineProbe

Bases: AbstractCreatinineProbe

Probe class for absolute creatinine criterion, according to KDIGO criteria.

This class represents a probe that calculates AKI stages according to absolute rises in creatinine, according to the KDIGO criteria. It extends the AbstractCreCreatinineProbe class.

Attributes:

Name Type Description
RESNAME str

The name of the resulting stage column.

Parameters:

Name Type Description Default
column str

The name of the column containing creatinine values.

"creat"
baseline_constant_column str

The name of the column containing constant baseline values.

"baseline_constant"
patient_weight_column str

The name of the column containing the patient's weight.

"weight"
patient_age_column str

The name of the column containing the patient's age.

"age"
patient_height_column str

The name of the column containing the patient's height.

"height"
patient_gender_column str

The name of the column containing the patient's gender.

"gender"
baseline_timeframe str

The timeframe for calculating the baseline values.

"2d"
expected_clearance float

The expected creatinine clearance rate.

72
method CreatinineBaselineMethod

The method for calculating the creatinine baseline values.

CreatinineBaselineMethod.ROLLING_MIN
Example
1
2
>>> probe = AbsoluteCreatinineProbe(column="creatinine", baseline_timeframe="7d", method=CreatinineMethod.MIN)
... df_result = probe.probe(df)
Source code in pyaki/probes.py
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
class AbsoluteCreatinineProbe(AbstractCreatinineProbe):
    """
    Probe class for absolute creatinine criterion, according to KDIGO criteria.

    This class represents a probe that calculates AKI stages according to absolute rises in creatinine, according to the KDIGO criteria.
    It extends the `AbstractCreCreatinineProbe` class.

    Attributes
    ----------
    RESNAME : str
        The name of the resulting stage column.

    Parameters
    ----------
    column : str, default: "creat"
        The name of the column containing creatinine values.
    baseline_constant_column : str, default: "baseline_constant"
        The name of the column containing constant baseline values.
    patient_weight_column : str, default: "weight"
        The name of the column containing the patient's weight.
    patient_age_column : str, default: "age"
        The name of the column containing the patient's age.
    patient_height_column : str, default: "height"
        The name of the column containing the patient's height.
    patient_gender_column : str, default: "gender"
        The name of the column containing the patient's gender.
    baseline_timeframe : str, default: "2d"
        The timeframe for calculating the baseline values.
    expected_clearance : float, default: 72
        The expected creatinine clearance rate.
    method : CreatinineBaselineMethod, default: CreatinineBaselineMethod.ROLLING_MIN
        The method for calculating the creatinine baseline values.

    Example
    -------
    ```pycon
    >>> probe = AbsoluteCreatinineProbe(column="creatinine", baseline_timeframe="7d", method=CreatinineMethod.MIN)
    ... df_result = probe.probe(df)
    ```
    """

    RESNAME = "abs_creatinine_stage"

    def __init__(
        self,
        column: str = "creat",
        baseline_constant_column: str = "baseline_constant",
        patient_weight_column: str = "weight",
        patient_age_column: str = "age",
        patient_height_column: str = "height",
        patient_gender_column: str = "gender",
        baseline_timeframe: str = "2d",
        expected_clearance: float = 72,
        method: CreatinineBaselineMethod = CreatinineBaselineMethod.ROLLING_MIN,
    ) -> None:
        super().__init__(
            column=column,
            baseline_constant_column=baseline_constant_column,
            patient_weight_column=patient_weight_column,
            patient_age_column=patient_age_column,
            patient_height_column=patient_height_column,
            patient_gender_column=patient_gender_column,
            baseline_timeframe=baseline_timeframe,
            expected_clearance=expected_clearance,
            method=method,
        )

    @dataset_as_df(df=DatasetType.CREATININE, patient=DatasetType.DEMOGRAPHICS)
    @df_to_dataset(DatasetType.CREATININE)
    def probe(
        self,
        df: pd.DataFrame,
        patient: pd.DataFrame,
        **kwargs: Any,
    ) -> pd.DataFrame:
        """
        Perform KDIGO stage calculation based on absolute creatinine elevations on the provided DataFrame.

        This method calculates the KDIGO stage based on the provided DataFrame
        and the configured baseline values. It calculates the stage according to KDIGO criteria.

        Parameters
        ----------
        df : pd.DataFrame
            The DataFrame containing the creatinine data. It should have a column
            with the name specified in the `column` attribute of the probe.
        patient : pd.DataFrame
            The DataFrame containing patient information. Should contain the patients weight in kg and the age.

        Returns
        -------
        pd.DataFrame
            The modified DataFrame with the absolute creatinine stage column added.
        """
        df = df.copy()

        baseline_values: pd.Series = self.creatinine_baseline(df, patient)

        df.loc[:, self.RESNAME] = 0
        df.loc[approx_gte((df[self._column] - baseline_values), 0.3), self.RESNAME] = 1
        df.loc[approx_gte(df[self._column], 4), self.RESNAME] = 3

        df.loc[pd.isna(df[self._column]), self.RESNAME] = np.nan

        return df

probe(df, patient, **kwargs)

Perform KDIGO stage calculation based on absolute creatinine elevations on the provided DataFrame.

This method calculates the KDIGO stage based on the provided DataFrame and the configured baseline values. It calculates the stage according to KDIGO criteria.

Parameters:

Name Type Description Default
df DataFrame

The DataFrame containing the creatinine data. It should have a column with the name specified in the column attribute of the probe.

required
patient DataFrame

The DataFrame containing patient information. Should contain the patients weight in kg and the age.

required

Returns:

Type Description
DataFrame

The modified DataFrame with the absolute creatinine stage column added.

Source code in pyaki/probes.py
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
@dataset_as_df(df=DatasetType.CREATININE, patient=DatasetType.DEMOGRAPHICS)
@df_to_dataset(DatasetType.CREATININE)
def probe(
    self,
    df: pd.DataFrame,
    patient: pd.DataFrame,
    **kwargs: Any,
) -> pd.DataFrame:
    """
    Perform KDIGO stage calculation based on absolute creatinine elevations on the provided DataFrame.

    This method calculates the KDIGO stage based on the provided DataFrame
    and the configured baseline values. It calculates the stage according to KDIGO criteria.

    Parameters
    ----------
    df : pd.DataFrame
        The DataFrame containing the creatinine data. It should have a column
        with the name specified in the `column` attribute of the probe.
    patient : pd.DataFrame
        The DataFrame containing patient information. Should contain the patients weight in kg and the age.

    Returns
    -------
    pd.DataFrame
        The modified DataFrame with the absolute creatinine stage column added.
    """
    df = df.copy()

    baseline_values: pd.Series = self.creatinine_baseline(df, patient)

    df.loc[:, self.RESNAME] = 0
    df.loc[approx_gte((df[self._column] - baseline_values), 0.3), self.RESNAME] = 1
    df.loc[approx_gte(df[self._column], 4), self.RESNAME] = 3

    df.loc[pd.isna(df[self._column]), self.RESNAME] = np.nan

    return df

AbstractCreatinineProbe

Bases: Probe

Abstract base class representing a creatinine probe.

This class serves as an abstract base class for creatinine probes. It extends the Probe class and provides common functionality and attributes for creatinine probe implementations.

Parameters:

Name Type Description Default
column str

The name of the column containing creatinine values.

"creat"
baseline_constant_column str

The name of the column containing constant baseline values.

"baseline_constant"
patient_weight_column str

The name of the column containing the patient's weight.

"weight"
patient_age_column str

The name of the column containing the patient's age.

"age"
patient_height_column str

The name of the column containing the patient's height.

"height"
patient_gender_column str

The name of the column containing the patient's gender.

"gender"
baseline_timeframe str

The timeframe for calculating the baseline values.

"7d"
expected_clearance float

The expected creatinine clearance rate.

72
method CreatinineBaselineMethod

The method for calculating the creatinine baseline values.

CreatinineBaselineMethod.ROLLING_MIN
Example
1
2
3
4
5
6
7
>>> class MyCreatinineProbe(AbstractCreCreatinineProbe):
...     def __init__(self, column="creatinine", baseline_timeframe="7d", method=CreatinineBaselineMethod.MIN):
...         super().__init__(column, baseline_timeframe, method)
...         # Additional initialization
...
...     def probe(self, df, **kwargs):
...         # Probe implementation specific to the derived class
Source code in pyaki/probes.py
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
class AbstractCreatinineProbe(Probe, metaclass=ABCMeta):
    """
    Abstract base class representing a creatinine probe.

    This class serves as an abstract base class for creatinine probes.
    It extends the `Probe` class and provides common functionality and attributes
    for creatinine probe implementations.

    Parameters
    ----------
    column : str, default: "creat"
        The name of the column containing creatinine values.
    baseline_constant_column : str, default: "baseline_constant"
        The name of the column containing constant baseline values.
    patient_weight_column : str, default: "weight"
        The name of the column containing the patient's weight.
    patient_age_column : str, default: "age"
        The name of the column containing the patient's age.
    patient_height_column : str, default: "height"
        The name of the column containing the patient's height.
    patient_gender_column : str, default: "gender"
        The name of the column containing the patient's gender.
    baseline_timeframe : str, default: "7d"
        The timeframe for calculating the baseline values.
    expected_clearance : float, default: 72
        The expected creatinine clearance rate.
    method : CreatinineBaselineMethod, default: CreatinineBaselineMethod.ROLLING_MIN
        The method for calculating the creatinine baseline values.

    Example
    -------
    ```pycon
    >>> class MyCreatinineProbe(AbstractCreCreatinineProbe):
    ...     def __init__(self, column="creatinine", baseline_timeframe="7d", method=CreatinineBaselineMethod.MIN):
    ...         super().__init__(column, baseline_timeframe, method)
    ...         # Additional initialization
    ...
    ...     def probe(self, df, **kwargs):
    ...         # Probe implementation specific to the derived class
    ```
    """

    def __init__(
        self,
        column: str = "creat",
        baseline_constant_column: str = "baseline_constant",
        patient_weight_column: str = "weight",
        patient_age_column: str = "age",
        patient_height_column: str = "height",
        patient_gender_column: str = "gender",
        baseline_timeframe: str = "7d",
        expected_clearance: float = 72,
        method: CreatinineBaselineMethod = CreatinineBaselineMethod.ROLLING_MIN,
    ) -> None:
        super().__init__()

        self._column: str = column
        self._baseline_constant_column: str = baseline_constant_column
        self._patient_weight_column: str = patient_weight_column
        self._patient_age_column: str = patient_age_column
        self._patient_height_column: str = patient_height_column
        self._patient_gender_column: str = patient_gender_column

        self._baseline_timeframe: str = baseline_timeframe
        self._expected_clearance: float = expected_clearance
        self._method: CreatinineBaselineMethod = method

    def creatinine_baseline(self, df: pd.DataFrame, patient: pd.DataFrame) -> pd.Series:
        """
        Calculate the creatinine baseline values.

        This method calculates the creatinine baseline values based on the configured
        parameters and the provided DataFrame.

        Parameters
        ----------
        df : pd.DataFrame
            The DataFrame containing the creatinine data.

        Returns
        -------
        pd.Series
            The calculated creatinine baseline values.
        """
        if isinstance(df.index, PeriodIndex):
            df.index = df.index.to_timestamp()

        if self._method == CreatinineBaselineMethod.ROLLING_FIRST:
            return (
                df[df[self._column] > 0]
                .rolling(self._baseline_timeframe)
                .agg(lambda rows: rows.iloc[0])
                .resample("1h")
                .first()
                .ffill()[self._column]
            )

        if self._method == CreatinineBaselineMethod.ROLLING_MIN:
            return (
                df[df[self._column] > 0]
                .rolling(self._baseline_timeframe)
                .min()
                .resample("1h")
                .min()
                .ffill()[self._column]
            )
        if self._method == CreatinineBaselineMethod.ROLLING_MEAN:
            return (
                df[df[self._column] > 0]
                .rolling(self._baseline_timeframe)
                .mean()
                .resample("1h")
                .mean()
                .ffill()[self._column]
            )

        if self._method == CreatinineBaselineMethod.FIXED_MIN:
            values: pd.Series = (
                df[df[self._column] > 0]
                .rolling(self._baseline_timeframe)
                .min()
                .resample("1h")
                .min()
                .ffill()[self._column]
            )
            min_value: pd.DatetimeIndex = values[
                values.index <= (values.index[0] + pd.Timedelta(self._baseline_timeframe))
            ].min()  # calculate min value for first 7 days
            values[
                values.index > (values.index[0] + pd.Timedelta(self._baseline_timeframe))
            ] = min_value  # set all values after first 7 days to min value

            return values

        if self._method == CreatinineBaselineMethod.FIXED_MEAN:
            time_delta = pd.to_timedelta(self._baseline_timeframe)
            end_time = df.index[0] + time_delta
            value = df[df.index <= end_time][self._column].mean()
            values = self._to_df_length(df, value)
            return values

        if self._method == CreatinineBaselineMethod.OVERALL_FIRST:
            value = df[df[self._column] > 0].iloc[0][self._column]
            values = self._to_df_length(df, value)
            return values

        if self._method == CreatinineBaselineMethod.OVERALL_MIN:
            value = df[df[self._column] > 0][self._column].min()
            values = self._to_df_length(df, value)
            return values

        if self._method == CreatinineBaselineMethod.OVERALL_MEAN:
            value = df[df[self._column] > 0][self._column].mean()
            values = self._to_df_length(df, value)
            return values

        if self._method == CreatinineBaselineMethod.CONSTANT:
            if self._baseline_constant_column not in patient:
                raise ValueError(
                    "Baseline constant method requires baseline constant values. Please provide a pd.Series containing baseline values for creatinine."
                )

            return pd.Series(
                [patient[self._baseline_constant_column]] * len(df),
                index=df.index,
                name=self._column,
            )

        if self._method == CreatinineBaselineMethod.CALCULATED:
            columns = [
                self._patient_weight_column,
                self._patient_age_column,
                self._patient_height_column,
                self._patient_gender_column,
            ]
            for column in columns:
                if column not in patient:
                    raise ValueError(
                        f"Calculated baseline method requires patient {column}. Please provide a pd.Series containing patient {column}."
                    )

            weight = patient[self._patient_weight_column]
            height = patient[self._patient_height_column]
            gender = patient[self._patient_gender_column]
            age = patient[self._patient_age_column]

            ibw = (50.0 if gender == "M" else 45.5) + 2.3 * height / 2.54 - 60
            abw = ibw + 0.4 * (weight - ibw)

            # fmt: off
            return pd.Series(
                [
                    ((140 - age) * abw * (1 if gender == "M" else 0.85)) /
                    (70 * self._expected_clearance)
                ] * len(df),
                index=df.index,
                name=self._column,
            )
            # fmt: on

    def _to_df_length(self, df: pd.DataFrame, value: float) -> pd.Series:
        """
        Helper function to create a series, the same length as the data frame.

        Parameters
        ----------
        df : pd.DataFrame
            The DataFrame to match the length of.
        value : float
            The value to fill the series with.

        Returns
        -------
        pd.Series
            The series with the same length as the DataFrame.
        """
        values = pd.Series(
            [value] * len(df),
            index=df.index,
            name=self._column,
        )
        return values

_to_df_length(df, value)

Helper function to create a series, the same length as the data frame.

Parameters:

Name Type Description Default
df DataFrame

The DataFrame to match the length of.

required
value float

The value to fill the series with.

required

Returns:

Type Description
Series

The series with the same length as the DataFrame.

Source code in pyaki/probes.py
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
def _to_df_length(self, df: pd.DataFrame, value: float) -> pd.Series:
    """
    Helper function to create a series, the same length as the data frame.

    Parameters
    ----------
    df : pd.DataFrame
        The DataFrame to match the length of.
    value : float
        The value to fill the series with.

    Returns
    -------
    pd.Series
        The series with the same length as the DataFrame.
    """
    values = pd.Series(
        [value] * len(df),
        index=df.index,
        name=self._column,
    )
    return values

creatinine_baseline(df, patient)

Calculate the creatinine baseline values.

This method calculates the creatinine baseline values based on the configured parameters and the provided DataFrame.

Parameters:

Name Type Description Default
df DataFrame

The DataFrame containing the creatinine data.

required

Returns:

Type Description
Series

The calculated creatinine baseline values.

Source code in pyaki/probes.py
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
def creatinine_baseline(self, df: pd.DataFrame, patient: pd.DataFrame) -> pd.Series:
    """
    Calculate the creatinine baseline values.

    This method calculates the creatinine baseline values based on the configured
    parameters and the provided DataFrame.

    Parameters
    ----------
    df : pd.DataFrame
        The DataFrame containing the creatinine data.

    Returns
    -------
    pd.Series
        The calculated creatinine baseline values.
    """
    if isinstance(df.index, PeriodIndex):
        df.index = df.index.to_timestamp()

    if self._method == CreatinineBaselineMethod.ROLLING_FIRST:
        return (
            df[df[self._column] > 0]
            .rolling(self._baseline_timeframe)
            .agg(lambda rows: rows.iloc[0])
            .resample("1h")
            .first()
            .ffill()[self._column]
        )

    if self._method == CreatinineBaselineMethod.ROLLING_MIN:
        return (
            df[df[self._column] > 0]
            .rolling(self._baseline_timeframe)
            .min()
            .resample("1h")
            .min()
            .ffill()[self._column]
        )
    if self._method == CreatinineBaselineMethod.ROLLING_MEAN:
        return (
            df[df[self._column] > 0]
            .rolling(self._baseline_timeframe)
            .mean()
            .resample("1h")
            .mean()
            .ffill()[self._column]
        )

    if self._method == CreatinineBaselineMethod.FIXED_MIN:
        values: pd.Series = (
            df[df[self._column] > 0]
            .rolling(self._baseline_timeframe)
            .min()
            .resample("1h")
            .min()
            .ffill()[self._column]
        )
        min_value: pd.DatetimeIndex = values[
            values.index <= (values.index[0] + pd.Timedelta(self._baseline_timeframe))
        ].min()  # calculate min value for first 7 days
        values[
            values.index > (values.index[0] + pd.Timedelta(self._baseline_timeframe))
        ] = min_value  # set all values after first 7 days to min value

        return values

    if self._method == CreatinineBaselineMethod.FIXED_MEAN:
        time_delta = pd.to_timedelta(self._baseline_timeframe)
        end_time = df.index[0] + time_delta
        value = df[df.index <= end_time][self._column].mean()
        values = self._to_df_length(df, value)
        return values

    if self._method == CreatinineBaselineMethod.OVERALL_FIRST:
        value = df[df[self._column] > 0].iloc[0][self._column]
        values = self._to_df_length(df, value)
        return values

    if self._method == CreatinineBaselineMethod.OVERALL_MIN:
        value = df[df[self._column] > 0][self._column].min()
        values = self._to_df_length(df, value)
        return values

    if self._method == CreatinineBaselineMethod.OVERALL_MEAN:
        value = df[df[self._column] > 0][self._column].mean()
        values = self._to_df_length(df, value)
        return values

    if self._method == CreatinineBaselineMethod.CONSTANT:
        if self._baseline_constant_column not in patient:
            raise ValueError(
                "Baseline constant method requires baseline constant values. Please provide a pd.Series containing baseline values for creatinine."
            )

        return pd.Series(
            [patient[self._baseline_constant_column]] * len(df),
            index=df.index,
            name=self._column,
        )

    if self._method == CreatinineBaselineMethod.CALCULATED:
        columns = [
            self._patient_weight_column,
            self._patient_age_column,
            self._patient_height_column,
            self._patient_gender_column,
        ]
        for column in columns:
            if column not in patient:
                raise ValueError(
                    f"Calculated baseline method requires patient {column}. Please provide a pd.Series containing patient {column}."
                )

        weight = patient[self._patient_weight_column]
        height = patient[self._patient_height_column]
        gender = patient[self._patient_gender_column]
        age = patient[self._patient_age_column]

        ibw = (50.0 if gender == "M" else 45.5) + 2.3 * height / 2.54 - 60
        abw = ibw + 0.4 * (weight - ibw)

        # fmt: off
        return pd.Series(
            [
                ((140 - age) * abw * (1 if gender == "M" else 0.85)) /
                (70 * self._expected_clearance)
            ] * len(df),
            index=df.index,
            name=self._column,
        )

CreatinineBaselineMethod

Bases: StrEnum

Enumeration class representing different methods for creatinine baseline calculations.

This class defines the available methods for calculating creatinine values. It is a subclass of the StrEnum class, which is a string-based enumeration. The available methods are MIN and FIRST.

Attributes:

Name Type Description
ROLLING_MIN str

Minimum of a rolling window following the timepoint of observation is used as baseline.

ROLLING_FIRST str

First value of a rolling window following the timepoint of observation is used as baseline.

ROLLING_MEAN str

Mean of a rolling window following the timepoint of observation is used as baseline.

FIXED_MIN str

Minimum of the first n days of observation is used as baseline.

FIXED_MEAN str

Mean of the first n days of observation is used as baseline.

OVERALL_FIRST str

First observed value is used as baseline.

OVERALL_MEAN str

Mean of all observed values is used as baseline.

OVERALL_MIN str

Minimum of all observed values is used as baseline.

CONSTANT str

A constant value is used as baseline.

CALCULATED str

A calculated value is used as baseline, based off of the Cockcroft-Gault-Formula using the Adjusted Body Weight.

Source code in pyaki/probes.py
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
class CreatinineBaselineMethod(StrEnum):
    """
    Enumeration class representing different methods for creatinine baseline calculations.

    This class defines the available methods for calculating creatinine values.
    It is a subclass of the `StrEnum` class, which is a string-based enumeration.
    The available methods are `MIN` and `FIRST`.

    Attributes
    ----------
    ROLLING_MIN : str
        Minimum of a rolling window following the timepoint of observation is used as baseline.
    ROLLING_FIRST : str
        First value of a rolling window following the timepoint of observation is used as baseline.
    ROLLING_MEAN : str
        Mean of a rolling window following the timepoint of observation is used as baseline.
    FIXED_MIN : str
        Minimum of the first n days of observation is used as baseline.
    FIXED_MEAN : str
        Mean of the first n days of observation is used as baseline.
    OVERALL_FIRST : str
        First observed value is used as baseline.
    OVERALL_MEAN : str
        Mean of all observed values is used as baseline.
    OVERALL_MIN : str
        Minimum of all observed values is used as baseline.
    CONSTANT : str
        A constant value is used as baseline.
    CALCULATED : str
        A calculated value is used as baseline, based off of the Cockcroft-Gault-Formula using the Adjusted Body Weight.
    """

    ROLLING_MIN = auto()
    ROLLING_FIRST = auto()
    ROLLING_MEAN = auto()
    FIXED_MIN = auto()
    FIXED_MEAN = auto()
    OVERALL_FIRST = auto()
    OVERALL_MEAN = auto()
    OVERALL_MIN = auto()
    CONSTANT = auto()
    CALCULATED = auto()

Probe

Bases: ABC

Abstract base class representing a data analysis probe.

This class serves as an abstract base class (ABC) for data analysis probes. It declares the abstract method probe() that must be implemented by its subclasses. The RESNAME attribute can be overridden by subclasses to specify the name of the result column generated by the probe.

Attributes:

Name Type Description
RESNAME str

The name of the result column generated by the probe.

Methods:

Name Description
probe

Abstract method to be implemented by subclasses. It performs data analysis on the provided datasets and returns a DataFrame with the analysis results.

Example
1
2
3
4
5
6
7
8
>>> class MyProbe(Probe):
...     RESNAME = "my_result"
...
...     def probe(self, datasets: list[Dataset], **kwargs) -> pd.DataFrame:
...         # Implementation of the probe's analysis...
...
... my_probe = MyProbe()
... result_df = my_probe.probe(datasets=my_datasets, additional_arg=value)
Source code in pyaki/probes.py
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
class Probe(ABC):
    """
    Abstract base class representing a data analysis probe.

    This class serves as an abstract base class (ABC) for data analysis probes.
    It declares the abstract method `probe()` that must be implemented by its subclasses.
    The `RESNAME` attribute can be overridden by subclasses to specify the name of the
    result column generated by the probe.

    Attributes
    ----------
    RESNAME : str
        The name of the result column generated by the probe.

    Methods
    -------
    probe()
        Abstract method to be implemented by subclasses. It performs data analysis on the
        provided datasets and returns a DataFrame with the analysis results.

    Example
    -------
    ```pycon
    >>> class MyProbe(Probe):
    ...     RESNAME = "my_result"
    ...
    ...     def probe(self, datasets: list[Dataset], **kwargs) -> pd.DataFrame:
    ...         # Implementation of the probe's analysis...
    ...
    ... my_probe = MyProbe()
    ... result_df = my_probe.probe(datasets=my_datasets, additional_arg=value)
    ```
    """

    RESNAME: str = ""  # name of the column that will be added to the dataframe

    def probe(self, datasets: list[Dataset], **kwargs: Any) -> list[Dataset]:
        """
        Abstract method to be implemented by subclasses.

        This method performs data analysis on the provided datasets and returns a DataFrame
        with the analysis results. Subclasses must override this method.

        Parameters
        ----------
        datasets : list[Dataset]
            A list of Dataset objects containing the input data.
        **kwargs
            Additional keyword arguments for the analysis.

        Returns
        -------
        pd.DataFrame
            The DataFrame containing the analysis results.
        """
        raise NotImplementedError()

probe(datasets, **kwargs)

Abstract method to be implemented by subclasses.

This method performs data analysis on the provided datasets and returns a DataFrame with the analysis results. Subclasses must override this method.

Parameters:

Name Type Description Default
datasets list[Dataset]

A list of Dataset objects containing the input data.

required
**kwargs Any

Additional keyword arguments for the analysis.

{}

Returns:

Type Description
DataFrame

The DataFrame containing the analysis results.

Source code in pyaki/probes.py
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
def probe(self, datasets: list[Dataset], **kwargs: Any) -> list[Dataset]:
    """
    Abstract method to be implemented by subclasses.

    This method performs data analysis on the provided datasets and returns a DataFrame
    with the analysis results. Subclasses must override this method.

    Parameters
    ----------
    datasets : list[Dataset]
        A list of Dataset objects containing the input data.
    **kwargs
        Additional keyword arguments for the analysis.

    Returns
    -------
    pd.DataFrame
        The DataFrame containing the analysis results.
    """
    raise NotImplementedError()

RRTProbe

Bases: Probe

Probe class for RRT.

This class represents a probe that calculates RRT. It will return a KDIGO stage 3 if the patient is on RRT at any time during the ICU stay. It will return 0 otherwise.

Attributes:

Name Type Description
RESNAME str

The name of the resulting stage column.

Parameters:

Name Type Description Default
column str

The name of the column containing the RRT data.

"rrt_status"
Source code in pyaki/probes.py
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
class RRTProbe(Probe):
    """
    Probe class for RRT.

    This class represents a probe that calculates RRT. It will return a KDIGO stage 3 if the patient is on RRT at any time during the ICU stay. It will return 0 otherwise.

    Attributes
    ----------
    RESNAME : str
        The name of the resulting stage column.

    Parameters
    ----------
    column : str, default: "rrt_status"
        The name of the column containing the RRT data.
    """

    RESNAME = "rrt_stage"

    def __init__(self, column: str = "rrt_status") -> None:
        super().__init__()

        self._column: str = column

    @dataset_as_df(df=DatasetType.RRT)
    @df_to_dataset(DatasetType.RRT)
    def probe(self, df: pd.DataFrame) -> pd.DataFrame:
        """
        Perform calculation of RRT on the provided DataFrame.

        Parameters
        ----------
        df : pd.DataFrame
            The DataFrame containing the RRT data. It should have a column
            with the name specified in the `column` attribute of the probe.

        Returns
        -------
        pd.DataFrame
            The modified DataFrame with the RRT stage column added.
        """
        df = df.copy()

        df.loc[:, self.RESNAME] = 0
        df.loc[df[self._column] == 1, self.RESNAME] = 3

        # transfer nans
        df.loc[pd.isna(df[self._column]), self.RESNAME] = np.nan

        return df

probe(df)

Perform calculation of RRT on the provided DataFrame.

Parameters:

Name Type Description Default
df DataFrame

The DataFrame containing the RRT data. It should have a column with the name specified in the column attribute of the probe.

required

Returns:

Type Description
DataFrame

The modified DataFrame with the RRT stage column added.

Source code in pyaki/probes.py
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
@dataset_as_df(df=DatasetType.RRT)
@df_to_dataset(DatasetType.RRT)
def probe(self, df: pd.DataFrame) -> pd.DataFrame:
    """
    Perform calculation of RRT on the provided DataFrame.

    Parameters
    ----------
    df : pd.DataFrame
        The DataFrame containing the RRT data. It should have a column
        with the name specified in the `column` attribute of the probe.

    Returns
    -------
    pd.DataFrame
        The modified DataFrame with the RRT stage column added.
    """
    df = df.copy()

    df.loc[:, self.RESNAME] = 0
    df.loc[df[self._column] == 1, self.RESNAME] = 3

    # transfer nans
    df.loc[pd.isna(df[self._column]), self.RESNAME] = np.nan

    return df

RelativeCreatinineProbe

Bases: AbstractCreatinineProbe

Probe class for relative creatinine measurements.

This class represents a probe calculates KDIGO stages based on relative creatinine elevations.

Attributes:

Name Type Description
RESNAME str

The name of the resulting stage column.

Parameters:

Name Type Description Default
column str

The name of the column containing creatinine values.

"creat"
baseline_constant_column str

The name of the column containing constant baseline values.

"baseline_constant"
patient_weight_column str

The name of the column containing the patient's weight.

"weight"
patient_age_column str

The name of the column containing the patient's age.

"age"
patient_height_column str

The name of the column containing the patient's height.

"height"
patient_gender_column str

The name of the column containing the patient's gender.

"gender"
baseline_timeframe str

The timeframe for calculating the baseline values.

"7d"
expected_clearance float

The expected creatinine clearance rate.

72
method CreatinineBaselineMethod

The method for calculating the creatinine baseline values.

CreatinineBaselineMethod.ROLLING_MIN
Example
1
2
>>> probe = RelativeCreatinineProbe(column="creatinine", baseline_timeframe="7d", method=CreatinineBaselineMethod.MIN)
... df_result = probe.probe(df)
Source code in pyaki/probes.py
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
class RelativeCreatinineProbe(AbstractCreatinineProbe):
    """
    Probe class for relative creatinine measurements.

    This class represents a probe calculates KDIGO stages based on relative creatinine elevations.

    Attributes
    ----------
    RESNAME : str
        The name of the resulting stage column.

    Parameters
    ----------
    column : str, default: "creat"
        The name of the column containing creatinine values.
    baseline_constant_column : str, default: "baseline_constant"
        The name of the column containing constant baseline values.
    patient_weight_column : str, default: "weight"
        The name of the column containing the patient's weight.
    patient_age_column : str, default: "age"
        The name of the column containing the patient's age.
    patient_height_column : str, default: "height"
        The name of the column containing the patient's height.
    patient_gender_column : str, default: "gender"
        The name of the column containing the patient's gender.
    baseline_timeframe : str, default: "7d"
        The timeframe for calculating the baseline values.
    expected_clearance : float, default: 72
        The expected creatinine clearance rate.
    method : CreatinineBaselineMethod, default: CreatinineBaselineMethod.ROLLING_MIN
        The method for calculating the creatinine baseline values.

    Example
    -------
    ```pycon
    >>> probe = RelativeCreatinineProbe(column="creatinine", baseline_timeframe="7d", method=CreatinineBaselineMethod.MIN)
    ... df_result = probe.probe(df)
    ```
    """

    RESNAME = "rel_creatinine_stage"

    @dataset_as_df(df=DatasetType.CREATININE, patient=DatasetType.DEMOGRAPHICS)
    @df_to_dataset(DatasetType.CREATININE)
    def probe(self, df: pd.DataFrame, patient: pd.DataFrame, **kwargs: Any) -> pd.DataFrame:
        """
        Perform calculation of relative creatinine elevations on the provided DataFrame.

        This method calculates the relative creatinine stage based on the provided DataFrame
        and the configured baseline values. It modifies the DataFrame by adding the relative
        creatinine stage column with appropriate values based on the calculations.

        Parameters
        ----------
        df : pd.DataFrame
            The DataFrame containing the creatinine data. It should have a column
            with the name specified in the `column` attribute of the probe.
        patient : pd.DataFrame
            The DataFrame containing patient information. Should contain the patients weight in kg and the age.

        Returns
        -------
        pd.DataFrame
            The modified DataFrame with the relative creatinine stage column added.
        """
        df = df.copy()

        baseline_values: pd.Series = self.creatinine_baseline(df, patient)

        df.loc[:, self.RESNAME] = 0
        df.loc[approx_gte((df[self._column] / baseline_values), 1.5), self.RESNAME] = 1.0
        df.loc[approx_gte((df[self._column] / baseline_values), 2), self.RESNAME] = 2
        df.loc[approx_gte((df[self._column] / baseline_values), 3), self.RESNAME] = 3

        df.loc[pd.isna(df[self._column]), self.RESNAME] = np.nan

        return df

probe(df, patient, **kwargs)

Perform calculation of relative creatinine elevations on the provided DataFrame.

This method calculates the relative creatinine stage based on the provided DataFrame and the configured baseline values. It modifies the DataFrame by adding the relative creatinine stage column with appropriate values based on the calculations.

Parameters:

Name Type Description Default
df DataFrame

The DataFrame containing the creatinine data. It should have a column with the name specified in the column attribute of the probe.

required
patient DataFrame

The DataFrame containing patient information. Should contain the patients weight in kg and the age.

required

Returns:

Type Description
DataFrame

The modified DataFrame with the relative creatinine stage column added.

Source code in pyaki/probes.py
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
@dataset_as_df(df=DatasetType.CREATININE, patient=DatasetType.DEMOGRAPHICS)
@df_to_dataset(DatasetType.CREATININE)
def probe(self, df: pd.DataFrame, patient: pd.DataFrame, **kwargs: Any) -> pd.DataFrame:
    """
    Perform calculation of relative creatinine elevations on the provided DataFrame.

    This method calculates the relative creatinine stage based on the provided DataFrame
    and the configured baseline values. It modifies the DataFrame by adding the relative
    creatinine stage column with appropriate values based on the calculations.

    Parameters
    ----------
    df : pd.DataFrame
        The DataFrame containing the creatinine data. It should have a column
        with the name specified in the `column` attribute of the probe.
    patient : pd.DataFrame
        The DataFrame containing patient information. Should contain the patients weight in kg and the age.

    Returns
    -------
    pd.DataFrame
        The modified DataFrame with the relative creatinine stage column added.
    """
    df = df.copy()

    baseline_values: pd.Series = self.creatinine_baseline(df, patient)

    df.loc[:, self.RESNAME] = 0
    df.loc[approx_gte((df[self._column] / baseline_values), 1.5), self.RESNAME] = 1.0
    df.loc[approx_gte((df[self._column] / baseline_values), 2), self.RESNAME] = 2
    df.loc[approx_gte((df[self._column] / baseline_values), 3), self.RESNAME] = 3

    df.loc[pd.isna(df[self._column]), self.RESNAME] = np.nan

    return df

UrineOutputMethod

Bases: StrEnum

Enumeration class representing different methods for urine output calculations

Attributes:

Name Type Description
STRICT str

Strict method for urine output calculations. Using this method, the urine output stage is calculated based on the maximum urine output in the past 6, 12, and 24 hours.

MEAN str

Mean method for urine output calculations.

Source code in pyaki/probes.py
75
76
77
78
79
80
81
82
83
84
85
86
87
88
class UrineOutputMethod(StrEnum):
    """
    Enumeration class representing different methods for urine output calculations

    Attributes
    ----------
    STRICT : str
        Strict method for urine output calculations. Using this method, the urine output stage is calculated based on the maximum urine output in the past 6, 12, and 24 hours.
    MEAN : str
        Mean method for urine output calculations.
    """

    STRICT = auto()
    MEAN = auto()

UrineOutputProbe

Bases: Probe

Subclass of Probe representing a probe calculating KDIGO stages according to urine output.

This class specializes the abstract base class Probe to perform calculations of KDIGO stages based on urine output. Common KDIGO criteria apply. It overrides the RESNAME attribute to set the name of the result column. The probe() method performs urine output analysis on the provided DataFrame and returns a modified DataFrame with a column containing the appropriate KDIGO stage, according to urine output, added.

Attributes:

Name Type Description
RESNAME str

The name of the result column representing urine output stage.

Parameters:

Name Type Description Default
column str

The name of the column representing urine output in the DataFrame.

"urineoutput"
patient_weight_column str

The name of the column representing the patient's weight in the patient DataFrame.

"weight"
anuria_limit float

The anuria limit for urine output calculations.

0.1
Example
1
2
>>> probe = UrineOutputProbe(column="urineoutput", anuria_limit=0.1)
... result_df = probe.probe(df=my_dataframe, patient=patient_df)
Source code in pyaki/probes.py
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
class UrineOutputProbe(Probe):
    """
    Subclass of Probe representing a probe calculating KDIGO stages according to urine output.

    This class specializes the abstract base class `Probe` to perform calculations of KDIGO stages based on urine output. Common KDIGO criteria apply.
    It overrides the `RESNAME` attribute to set the name of the result column.
    The `probe()` method performs urine output analysis on the provided DataFrame and returns a modified DataFrame
    with a column containing the appropriate KDIGO stage, according to urine output, added.

    Attributes
    ----------
    RESNAME : str
        The name of the result column representing urine output stage.

    Parameters
    ----------
    column : str, default: "urineoutput"
        The name of the column representing urine output in the DataFrame.
    patient_weight_column : str, default: "weight"
        The name of the column representing the patient's weight in the patient DataFrame.
    anuria_limit : float, default: 0.1
        The anuria limit for urine output calculations.

    Example
    -------
    ```pycon
    >>> probe = UrineOutputProbe(column="urineoutput", anuria_limit=0.1)
    ... result_df = probe.probe(df=my_dataframe, patient=patient_df)
    ```
    """

    RESNAME = "urineoutput_stage"

    def __init__(
        self,
        column: str = "urineoutput",
        patient_weight_column: str = "weight",
        anuria_limit: float = 0.1,
        method: UrineOutputMethod = UrineOutputMethod.MEAN,
    ) -> None:
        super().__init__()

        self._column: str = column
        self._patient_weight_column: str = patient_weight_column

        self._anuria_limit: float = anuria_limit
        self._method: UrineOutputMethod = method

    @dataset_as_df(df=DatasetType.URINEOUTPUT, patient=DatasetType.DEMOGRAPHICS)
    @df_to_dataset(DatasetType.URINEOUTPUT)
    def probe(
        self,
        df: pd.DataFrame,
        patient: pd.DataFrame,
        **kwargs: Any,
    ) -> pd.DataFrame:
        """
        Perform urine output analysis on the provided DataFrame.

        This method calculates the KDIGO stage according to urine output based on the provided DataFrame and patient information DataFrame.
        It modifies the DataFrame by adding the urine output stage column with appropriate values based on the calculations.

        Parameters
        ----------
        df : pd.DataFrame
            The DataFrame containing the urine output data. We expect the DataFrame to contain urine output values in ml, sampled hourly.
        patient : pd.DataFrame
            The DataFrame containing patient information. Should contain the patients weight in kg.

        Returns
        -------
        pd.DataFrame
            The modified DataFrame with the urine output stage column added.
        """
        if self._patient_weight_column not in patient:
            raise ValueError("Missing weight for stay")

        df = df.copy()

        weight: pd.Series = patient[self._patient_weight_column]
        # fmt: off
        df.loc[:, self.RESNAME] = np.nan  # set all urineoutput_stage values to NaN
        df.loc[df.rolling(6).min()[self._column] >= 0, self.RESNAME] = 0

        if self._method == UrineOutputMethod.STRICT:
            df.loc[(df.rolling(6).max()[self._column] / weight) < 0.5, self.RESNAME] = 1
            df.loc[(df.rolling(12).max()[self._column] / weight) < 0.5, self.RESNAME] = 2
            df.loc[(df.rolling(24).max()[self._column] / weight) < 0.3, self.RESNAME] = 3
            df.loc[(df.rolling(12).max()[self._column] / weight) < self._anuria_limit, self.RESNAME] = 3
        elif self._method == UrineOutputMethod.MEAN:
            df.loc[(df.rolling(6).mean()[self._column] / weight) < 0.5, self.RESNAME] = 1
            df.loc[(df.rolling(12).mean()[self._column] / weight) < 0.5, self.RESNAME] = 2
            df.loc[(df.rolling(24).mean()[self._column] / weight) < 0.3, self.RESNAME] = 3
            df.loc[(df.rolling(12).mean()[self._column] / weight) < self._anuria_limit, self.RESNAME] = 3
        else:
            raise ValueError(f"Invalid method: {self._method}")
        # fmt: on

        df.loc[pd.isna(df[self._column]), self.RESNAME] = np.nan

        return df

probe(df, patient, **kwargs)

Perform urine output analysis on the provided DataFrame.

This method calculates the KDIGO stage according to urine output based on the provided DataFrame and patient information DataFrame. It modifies the DataFrame by adding the urine output stage column with appropriate values based on the calculations.

Parameters:

Name Type Description Default
df DataFrame

The DataFrame containing the urine output data. We expect the DataFrame to contain urine output values in ml, sampled hourly.

required
patient DataFrame

The DataFrame containing patient information. Should contain the patients weight in kg.

required

Returns:

Type Description
DataFrame

The modified DataFrame with the urine output stage column added.

Source code in pyaki/probes.py
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
@dataset_as_df(df=DatasetType.URINEOUTPUT, patient=DatasetType.DEMOGRAPHICS)
@df_to_dataset(DatasetType.URINEOUTPUT)
def probe(
    self,
    df: pd.DataFrame,
    patient: pd.DataFrame,
    **kwargs: Any,
) -> pd.DataFrame:
    """
    Perform urine output analysis on the provided DataFrame.

    This method calculates the KDIGO stage according to urine output based on the provided DataFrame and patient information DataFrame.
    It modifies the DataFrame by adding the urine output stage column with appropriate values based on the calculations.

    Parameters
    ----------
    df : pd.DataFrame
        The DataFrame containing the urine output data. We expect the DataFrame to contain urine output values in ml, sampled hourly.
    patient : pd.DataFrame
        The DataFrame containing patient information. Should contain the patients weight in kg.

    Returns
    -------
    pd.DataFrame
        The modified DataFrame with the urine output stage column added.
    """
    if self._patient_weight_column not in patient:
        raise ValueError("Missing weight for stay")

    df = df.copy()

    weight: pd.Series = patient[self._patient_weight_column]
    # fmt: off
    df.loc[:, self.RESNAME] = np.nan  # set all urineoutput_stage values to NaN
    df.loc[df.rolling(6).min()[self._column] >= 0, self.RESNAME] = 0

    if self._method == UrineOutputMethod.STRICT:
        df.loc[(df.rolling(6).max()[self._column] / weight) < 0.5, self.RESNAME] = 1
        df.loc[(df.rolling(12).max()[self._column] / weight) < 0.5, self.RESNAME] = 2
        df.loc[(df.rolling(24).max()[self._column] / weight) < 0.3, self.RESNAME] = 3
        df.loc[(df.rolling(12).max()[self._column] / weight) < self._anuria_limit, self.RESNAME] = 3
    elif self._method == UrineOutputMethod.MEAN:
        df.loc[(df.rolling(6).mean()[self._column] / weight) < 0.5, self.RESNAME] = 1
        df.loc[(df.rolling(12).mean()[self._column] / weight) < 0.5, self.RESNAME] = 2
        df.loc[(df.rolling(24).mean()[self._column] / weight) < 0.3, self.RESNAME] = 3
        df.loc[(df.rolling(12).mean()[self._column] / weight) < self._anuria_limit, self.RESNAME] = 3
    else:
        raise ValueError(f"Invalid method: {self._method}")
    # fmt: on

    df.loc[pd.isna(df[self._column]), self.RESNAME] = np.nan

    return df