preprocessors
This module contains the preprocessors used in the pyaki package.
CreatininePreProcessor
Bases: Preprocessor
Preprocessor for processing the creatinine dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stay_identifier
|
str
|
The column name that identifies stays or admissions in the dataset. |
"stay_id"
|
time_identifier
|
str
|
The column name that identifies the timestamp or time variable in the dataset. |
"charttime"
|
ffill
|
bool
|
Flag indicating whether to perform forward filling on missing values. |
True
|
threshold
|
int
|
The threshold value for limiting the forward filling range. |
72
|
Source code in pyaki/preprocessors.py
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
|
process(df)
Process the creatinine dataset by resampling and performing forward filling on missing values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input creatinine dataset as a pandas DataFrame. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
The processed creatinine dataset as a pandas DataFrame. |
Source code in pyaki/preprocessors.py
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
|
DemographicsPreProcessor
Bases: Preprocessor
Preprocessor for processing the demographics dataset.
Source code in pyaki/preprocessors.py
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
|
process(df)
Process the demographics dataset by aggregating the data based on stay identifiers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input demographics dataset as a pandas DataFrame. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
The processed demographics dataset as a pandas DataFrame. |
Source code in pyaki/preprocessors.py
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
|
Preprocessor
Bases: ABC
Abstract base class for preprocessors.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stay_identifier
|
str
|
The column name that identifies stays or admissions in the dataset. |
"stay_id"
|
time_identifier
|
str
|
The column name that identifies the timestamp or time variable in the dataset. |
"charttime"
|
Source code in pyaki/preprocessors.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
|
process(datasets)
Process the given list of datasets and return the processed datasets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
datasets
|
list[Dataset]
|
The list of datasets to be processed. |
required |
Returns:
Type | Description |
---|---|
list[Dataset]
|
The processed datasets. |
Source code in pyaki/preprocessors.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
|
RRTPreProcessor
Bases: Preprocessor
Preprocessor for processing the RRT dataset.
Source code in pyaki/preprocessors.py
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
|
process(df)
Process the RRT dataset by upsampling the data and forward filling the last value. We expect the dataframe to contain a 1 for RRT in progress, and 0 for RRT not in progress.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input RRT dataset as a pandas DataFrame. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
The processed RRT dataset as a pandas DataFrame. |
Source code in pyaki/preprocessors.py
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
|
TimeIndexCreator
Bases: Preprocessor
Preprocessor for creating a time index in the datasets.
Attributes:
Name | Type | Description |
---|---|---|
DATASETS |
list[DatasetType]
|
The list of dataset types that require a time index. |
Source code in pyaki/preprocessors.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
|
process(datasets)
Process the datasets by creating a time index if the dataset type requires it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
datasets
|
list[Dataset]
|
The list of datasets to be processed. |
required |
Returns:
Type | Description |
---|---|
list[Dataset]
|
The processed datasets. |
Source code in pyaki/preprocessors.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
|
UrineOutputPreProcessor
Bases: Preprocessor
Preprocessor for processing the urine output dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stay_identifier
|
str
|
The column name that identifies stays or admissions in the dataset. |
"stay_id"
|
time_identifier
|
str
|
The column name that identifies the timestamp or time variable in the dataset. |
"charttime"
|
interpolate
|
bool
|
Flag indicating whether to perform interpolation on missing values. |
True
|
threshold
|
int
|
The threshold value for limiting the interpolation range. |
6
|
Source code in pyaki/preprocessors.py
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
|
process(df)
Process the urine output dataset by resampling, interpolating missing values, and applying threshold-based adjustments.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input urine output dataset as a pandas DataFrame. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
The processed urine output dataset as a pandas DataFrame. |
Source code in pyaki/preprocessors.py
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
|